ГИДРОМЕХАНИЧЕСКАЯ ПЕРЕДАЧА

Гидромеханическая передача (ГМП) успешно применяется на автомобилях уже более полувека и дает возможность заметно облегчить управление автомобилем.

Применение гидромеханической передачи на автомобиле позволяет получить следующие преимущества:

1. Обеспечение автоматизации переключения передач и отсутствие необходимости иметь пе­даль сцепления.

2. Повышение проходимости автомобиля в условиях бездорожья за счет отсутствия разрыва потока мощности при переключении передач.

3. Повышение долговечности двигателя и агрегатов трансмиссии за счет способности гидротрансформатора снижать динамические нагрузки.

В то же время как недостаток необходимо отметить потерю мощности и повышение расхода топлива за счет более низкого КПД ГМП по сравнению с автомобилем, имеющим механическую коробку передач.

Гидромеханическая передачавключает в себя три основные части:

гидротрансформатор;

механическую коробку передач;

систему управления.

На автомобилях ГМП впервые появилась в США: в 1940 г. коробка Hydramatic была установлена на автомобилях Oldsmobile. Справедливости ради необходимо отметить, что еще с начала 1930-х гг, на английских автобусах использовалась гидромеханическая трансмиссия Wilson, которая не была автоматической, но облегчала работу водителя. В настоящее время в США ГМП снабжаются 90 % легковых автомобилей, а также все городские автобусы и значительная часть грузовых автомобилей. В Европе массовое применение ГМП началось только в начале семидесятых годов прошлого века, когда эти передачи нашли применение в автомобилях Mercedes-Benz, Opel, BMW. В это же время в Европе строятся специализированные заводы по производству ГМП: фирма Borg-Warner строит завод в Англии (г. Летифорд), Ford – в г. Бордо (Франция), GM – в Страсбурге (Франция). В Японии появляются сразу два специализированных производства – Jatco и Aisin-Wamer.

Гидротрансформатор (рис. 3.34; 3.35) был изобретен немецким профессором Феттингером в 1905 г. Прежде чем найти применение на автомобилях, гидротрансформатор использовался на судах и тепловозах.

Простейший гидротрансформатор, выполнен в виде камеры тороидальной формы и включает в себя три лопастных колеса: насосное,вал которого соединен с коленчатым валом двигателя; турбинное,соединенное с трансмиссией, и реактор,установленный в корпусе гидротрансформатора (рис. 3.36).

Гидротрансформатор заполняется спе­циальной жидкостью. Каждое колесо имеет наружный и внутренний торцы, между кото­рыми располагаются профилированные ло­пасти, образующие каналы для протока жидкости. Все колеса гидротрансформатора максимально приближены друг к другу, а вытеканию жидкости препятствует специ­альное уплотнение.

При вращении коленчатого вала двигате­ля вращается насосное колесо, которое перемещает жидкость, находящуюся между его лопастями. Жидкость не только вра­щается относительно оси гидротрансфор­матора, но и за счет воздействия на нее цен­тробежных сил перемещается вдоль лопа­стей насосного колеса по направлению от входа к выходу, что сопровождается увеличе­нием кинетической энергии потока. На выхо­де из насосного колеса поток жидкости попа­дает на турбинное колесо, оказывая силовое воздействие на его лопасти. Затем поток по­падает в реактор, пройдя который, возвра­щается к входу в насосное колесо. Таким об­разом, жидкость постоянно перемещается по з проточными частями всех трех лопастных колес вии. При этом насос передает энергию двигател

Если бы между насосным и турбинным колесом отсутствовал реактор, то такая конструкция (гидромуфта) осуществляла бы перенос энергии от двигателя к трансмиссии гидравлическим способом, без возможности изменения крутящего

Рис. 3.36. Детали гидротрансформатора:1 — насосное колесо; 2 — турбинное колесо; 3 — крышки муфты свободного хода; 4 — часть корпуса гидротрансформатора; 5 — остатки рабочей жидкости с продуктами механического износа деталей; 6 — колесо реактора; 7 — муфта свободного хода реактора; 8 — упорная шайба турбинного колеса; 9 — упорный под­шипник реактора; 10 — поршень блокировки гидротрансформатора

Максимальный коэффициент трансформации зависит от конструкции гидротрансформатора и может составлять до 2,4 (при неподвижном турбинном колесе). При увеличении час­тоты вращения вала двигателя увеличивается угловая скорость насосного и турбинного ко­лес, а увеличение крутящего момента в гидротрансформаторе плавно уменьшается. Когда угловая скорость турбинного колеса приближается к угловой скорости насосного, поток жид­кости, поступающей на лопасти реактора, изменяет свое направление на противоположное.

Для того чтобы реактор на этом режиме не создавал помех потоку жидкости, его устана­вливают на муфте свободного хода, и он начинает свободно вращаться (гидротрансформа­тор переходит на режим гидромуфты), что позволяет, в свою очередь, снизить потери. Такие гидротрансформаторы называют комплексными.

загрузка...

КПД гидротрансформатора определяет экономичность его работы. Максимальное значе­ние КПД гидротрансформатора может быть от 0,85 до 0,97, но обычно находится в диапазоне от 0,7 до 0,8. В комплексном гидротрансформаторе на режиме гидромуфты можно получить максимальное значение КПД — 0,97.

Изменение режимов работы гидротрансформатора происходит автоматически. Если уве­личивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.

К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обес­печивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидро­трансформатором устанавливают специальную коробку передач, которая компенсирует указанные недостатки. Такая гидромеханиеская передача является бесступенчатой позволяет получить любое передаточное число в заданном диапазоне.

В гидромеханических передачах в основном применяются механические планетарные коробки передач, которые легко поддаются автоматизации, но иногда используют и обычные ступенчатые коробки передач с автоматическим управлением.

Простая планетарная передача состоит из центральной, «солнечной», шестерни и на­ружной шестерни в виде кольца, с внутренним зубьями; эти две шестерни связаны между собой посредством нескольких (обычно трех) шестерен-сателлитов, смонтированных на общей раме, которая называ­йся водилом.

Для того чтобы планетарная передача вменяла крутящий момент, нужно обеспечить вращение одного из ее элементов («солнечной», коронной шестерни или водила), ) один из элементов затормозить. В этом случае третий элемент будет вращаться с угловой скоростью, определяемой числом зубьев шестерен, входящих в планетарную передачу. Если одновременно затормозить два элемента, планетарная передача будет работать, как прямая с передаточным числом равным единице. Планетарная передача позволяет легко реверсировать вращение для получения заднего хода автомобиля. В то же время такие передачи достаточно омпактны, обеспечивают возможность по­лучения больших передаточных чисел и легко соединяются последовательно для получения большого числа ступеней. Для переключе­ния передач достаточно просто затормажи­вать валы отдельных элементов планетар­ной коробки передач. Раньше в качестве тормозных устройств часто использовали ленточные тормоза, а в последнее время они практически вытеснены многодисковы­ми «мокрыми» сцеплениями — фрикциона­ми. Существуют и более сложные варианты планетарных передач.

Первые американские ГМП легковых ав­томобилей имели двухступенчатую переда­чу, причем низшая передача включалась вручную. Однако впоследствии одной авто-

Рис. 3.37. Простая планетарная передача (а):А — солнечное колесо; В — эпицикл; С — сателлиты; D — водило; V — линейная скорость; и схема планетарной передачи (б):

1 — солнечная шестерня; 2, 4, 6 — сателли­ты; 3 — водило; 5 — коронная шестерня

Рис. 3.38. Варианты исполнения планетарных передач:1, 2, 3 — валы; 4 — водило; 5, 8, 9 — сателлиты; 6, 7 — коронное зубчатое колесо

матической передачи оказалось явно недостаточно и появились ГМП с двумя и тремя авто­матическими передачами. Для повышения топливной экономичности, гидротрансформато­ры стали делать блокирующимися — после разгона на высшей передаче насосное и турбин­ное колеса жестко соединялись фрикционной муфтой. Затем в конце 1980-х гг. блокировку гидротрансформатора стали применять на всех передачах, кроме первой. Система автоматического управления обычно состоит из следующих подсистем:

функционирования (гидравлические насосы, регуляторы давления);

измерительная, собирающая информацию о параметрах управления;

управляющая, вырабатывающая управляющие сигналы;

исполнительная, осуществляющая управление переключением передач, работой двигателя;

подсистема ручного управления;

Однако, как и прежде, многое зависит от выбора закона переключения и организации переходного процесса переключения пере­дач, а также тщательного согласования их с характеристиками двигателя. опасных ситуаций.Конец 80-х гг. ознаменовался повсеместным внедрением электроники. Она позволяет гораздо точнее выдерживать заданные моменты переключения (с точностью до 1 % вместо прежних 6-8 %). Появились дополнительные возможности: по характеру изменения скорости при данной нагрузке на дви­гатель компьютер может вычислить массу автомобиля и ввести соответствующие поправки в алгоритм переключения. Электронное управление предоставило неограниченные возможности для само­диагностики, что позволило корректиро­вать процессы управления в зависимости подсистема автоматических защит, предотвращающая возникновение от многих параметров (от температуры и вязкости жидкости до степени износа фрикционных элементов).

Рис. 3.39. Современная четырехступенчатая ГМП автомобиля классической компоновки

Рис. 3.40. Гидромеханическая коробка передач 7G-Tronik — первая в мире се миступенчатая автоматическая коробка (Mercedes-Benz)

Однако, как и прежде, многое зависит от выбора закона переключения и организации -переходного процесса переключения пере- дач, а также тщательного согласования их

с характеристиками двигателя. Например, многие автомобили BMW, Audi, Jaguar имеют одинаковые по конструктивным особенностям автоматические коробки передач одной и той же фирмы Zanradfabrik (ZF), но они работают со-

Рис. 3.41. Устройство коробки передач 7G-Tronik:1 — ведущий вал; 2 — фрикцион блоки­ровки гидротрансформатора с гасителем крутильных колебаний; 3 — масляный насос с кон­тролем давления; 4 — фрикционы и планетарные передачи; 5 — выходной вал; 6 — стояночный тормоз; 7 — селектор; 8 — электронный блок управления; клапаны и датчики, встроенные в поддон; 9 — электронный блок переключения передач; 10 — высокоскоростные соленои­ды; 11 — гидротрансформатор

С сентября 2003 г. на автомобили Mercedes-Benz класса Е, S, SL и CL устанав­ливаются гидромеханические коробки пе­редач 7G-Tronik (рис. 3.40). Эта семиступен-чатая автоматическая коробка передач при­шла на смену пятиступенчатому варианту ГМП. Новая ГМП позволила снизить расход топлива в среднем на 5 % в зависимости от модели автомобиля. Переключение пере­дач происходит быстрее и более плавно.

Переключение передач осуществляется тремя многодисковыми тормозами, на кото­рые оказывают воздействие гидравличе­ские цилиндры. Давление в системе управ­ления создает гидронасос с приводом от двигателя через насосное колесо гидро­трансформатора. В нижнюю часть коробки

устанавливается гидравлическое исполнительное золотниковое устройство, которое с помо­щью электромагнитных клапанов и по команде блока управления соединяет гидронасос с гидравлическими элементами сцепления и тормозов.

Рис. 3.42. Основные элементы электрон­ной системы управления:1 — блок управ­ления; 2 — соединительный кабель; 3 — ры­чаг управления; 4 — электрический разъем; 5 —ГМП

Основными элементами электронной системы управления являются электронный блок и рычаг управления. В правом секторе рычаг может занимать четыре позиции:

Р — режим парковки;

R — задний ход;

N — нейтральная передача;

D — движение в режиме автоматического переключения передач.

При положении рычага в позиции D программа обеспечивает различные алгоритмы пе­реключения в соответствии с сопротивлением движения, нагрузкой, положением педали «газа», дорожной ситуацией. Алгоритмы управления соответствуют движению в различных условиях:

· движение с постоянной высокой скоростью;

· городской режим движения;

· горный режим движения;

· режим буксировки;

· движение на поворотах.

При перемещении рычага влево водитель переводит коробку передач в режим ручного пе­реключения. Движением рычага вперед-назад — включение повышающей-понижающей пе­редачи. Такое переключение передач принято называть секвентальным (последовательным). Электронный блок управления является адаптивным, он запоминает манеру вождения водителя и корректирует алгоритмы автоматического переключения передач.


Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

+ 59 = 66